UNIT 2 SYSTEM

NUMBER SYSTEM

- 1. Binary Number
- 2. Decimal Number
- 3. Octal Number
- 4. Hexa Decimal Number

BINARY NUMBER

The binary <u>number system</u>, also called the base-2 <u>number system</u>, is a method of representing numbers that counts by using combinations of only two numerals: zero (0) and one (1). Computers use the binary number system to manipulate and store all of their data including numbers, words, videos, graphics, and music.

DECIMAL NUMBER

Decimal is a term that describes the base-10 number system, probably the most commonly used number system. The decimal number system consists of ten single- digit numbers: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.

OCTAL NUMBER

The octal <u>numeral system</u>, or oct for short, is the <u>base</u>-8 number system, and uses the <u>digits</u> 0 to 7. Octal numerals can be made from <u>binary</u> numerals by grouping consecutive binary digits into groups of three

HEXA DECIMAL NUMBER

In mathematics and computing, hexadecimal (also base 16, or hex) is a positional system that represents numbers using a base of 16. Unlike the common way of representing numbers with ten symbols, it uses sixteen distinct symbols, most often the symbols "0"-"9" to represent values zero to nine, and "A"-"F" (or alternatively "a"-"f") to represent values ten to fifteen.

BINARY TO DECIMAL CONVERSION

Binary Number: 111012

Calculating Decimal Equivalent -

Step	Binary Number	Decimal Number
Slep 1	111012	$((1 \times 2^4) + (1 \times 2^3) + (1 \times 2^2) + (0 \times 2^1) + (1 \times 2^0))_{10}$
Step 2	111012	(16 + 8 + 4 + 0 + 1) ₁₀
Step 3	111012	29 ₁₀

Binary Number: 11101₂ - Decimal Number: 29₁₀

DECIMAL TO BINARY CONVERSION

Step 2 - Convert Decimal to Binary

Step	Operation	Result	Remainder
Step 1	21 / 2	10	1
Step 2	10 / 2	5	0
Step 3	5/2	2	1
Step 4	2/2	1	0
Step 5	1/2	0	1

Decimal Number: 21₁₀ = Binary Number: 10101₂

OCTAL TO BINARY CONVERSION

Octal Number: 25₈

Calculating Binary Equivalent -

Step 1 - Convert to Decimal

Step	Octal Number	Decimal Number
Step 1	258	$((2 \times 8^{1}) + (5 \times 8^{0}))_{10}$
Step 2	258	(16 + 5) ₁₀
Step 3	258	21 ₁₀

Octal Number: 25₈ = Decimal Number: 21₁₀

Step 2 - Convert Decimal to Binary

Step	Operation	Result	Remainder
Step 1	21 / 2	10	1
Step 2	10 / 2	5	0
Step 3	5/2	2	1
Step 4	2/2	1	0
Step 5	1/2	0	1

Decimal Number : 21₁₀ = Binary Number : 10101₂

Octal Number : 25₈ = Binary Number : 10101₂

HEXA DECIMAL TO BINARY CONVERSION

Hexadecimal Number: 15₁₆

Calculating Binary Equivalent -

Step	Hexadecimal Number	Binary Number
Step 1	15 ₁₆	1 ₁₀ 5 ₁₀
Step 2	15 ₁₆	00012 01012
Step 3	15 ₁₆	000101012

Hexadecimal Number: 15₁₆ = Binary Number: 10101₂